10 resultados para Lantern projection
em Boston University Digital Common
Resumo:
Space carving has emerged as a powerful method for multiview scene reconstruction. Although a wide variety of methods have been proposed, the quality of the reconstruction remains highly-dependent on the photometric consistency measure, and the threshold used to carve away voxels. In this paper, we present a novel photo-consistency measure that is motivated by a multiset variant of the chamfer distance. The new measure is robust to high amounts of within-view color variance and also takes into account the projection angles of back-projected pixels. Another critical issue in space carving is the selection of the photo-consistency threshold used to determine what surface voxels are kept or carved away. In this paper, a reliable threshold selection technique is proposed that examines the photo-consistency values at contour generator points. Contour generators are points that lie on both the surface of the object and the visual hull. To determine the threshold, a percentile ranking of the photo-consistency values of these generator points is used. This improved technique is applicable to a wide variety of photo-consistency measures, including the new measure presented in this paper. Also presented in this paper is a method to choose between photo-consistency measures, and voxel array resolutions prior to carving using receiver operating characteristic (ROC) curves.
Resumo:
A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.
Resumo:
A method for reconstruction of 3D rational B-spline surfaces from multiple views is proposed. Given corresponding features in multiple views, though not necessarily visible in all views, the surface is reconstructed. First 2D B-spline patches are fitted to each view. The 3D B-splines and projection matricies can then be extracted from the 2D B-splines using factorization methods. The surface fit is then further refined via an iterative procedure. Finally, a hierarchal fitting scheme is proposed to allow modeling of complex surfaces by means of knot insertion. Experiments with real imagery demonstrate the efficacy of the approach.
Resumo:
We introduce Active Hidden Models (AHM) that utilize kernel methods traditionally associated with classification. We use AHMs to track deformable objects in video sequences by leveraging kernel projections. We introduce the "subset projection" method which improves the efficiency of our tracking approach by a factor of ten. We successfully tested our method on facial tracking with extreme head movements (including full 180-degree head rotation), facial expressions, and deformable objects. Given a kernel and a set of training observations, we derive unbiased estimates of the accuracy of the AHM tracker. Kernels are generally used in classification methods to make training data linearly separable. We prove that the optimal (minimum variance) tracking kernels are those that make the training observations linearly dependent.
Resumo:
We present a framework for estimating 3D relative structure (shape) and motion given objects undergoing nonrigid deformation as observed from a fixed camera, under perspective projection. Deforming surfaces are approximated as piece-wise planar, and piece-wise rigid. Robust registration methods allow tracking of corresponding image patches from view to view and recovery of 3D shape despite occlusions, discontinuities, and varying illumination conditions. Many relatively small planar/rigid image patch trackers are scattered throughout the image; resulting estimates of structure and motion at each patch are combined over local neighborhoods via an oriented particle systems formulation. Preliminary experiments have been conducted on real image sequences of deforming objects and on synthetic sequences where ground truth is known.
Resumo:
A novel approach for estimating articulated body posture and motion from monocular video sequences is proposed. Human pose is defined as the instantaneous two dimensional configuration (i.e., the projection onto the image plane) of a single articulated body in terms of the position of a predetermined set of joints. First, statistical segmentation of the human bodies from the background is performed and low-level visual features are found given the segmented body shape. The goal is to be able to map these, generally low level, visual features to body configurations. The system estimates different mappings, each one with a specific cluster in the visual feature space. Given a set of body motion sequences for training, unsupervised clustering is obtained via the Expectation Maximation algorithm. Then, for each of the clusters, a function is estimated to build the mapping between low-level features to 3D pose. Currently this mapping is modeled by a neural network. Given new visual features, a mapping from each cluster is performed to yield a set of possible poses. From this set, the system selects the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input. Performance of the proposed approach is characterized using a new set of known body postures, showing promising results.
Resumo:
In an outsourced database system the data owner publishes information through a number of remote, untrusted servers with the goal of enabling clients to access and query the data more efficiently. As clients cannot trust servers, query authentication is an essential component in any outsourced database system. Clients should be given the capability to verify that the answers provided by the servers are correct with respect to the actual data published by the owner. While existing work provides authentication techniques for selection and projection queries, there is a lack of techniques for authenticating aggregation queries. This article introduces the first known authenticated index structures for aggregation queries. First, we design an index that features good performance characteristics for static environments, where few or no updates occur to the data. Then, we extend these ideas and propose more involved structures for the dynamic case, where the database owner is allowed to update the data arbitrarily. Our structures feature excellent average case performance for authenticating queries with multiple aggregate attributes and multiple selection predicates. We also implement working prototypes of the proposed techniques and experimentally validate the correctness of our ideas.
Resumo:
Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.
Resumo:
Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.
Resumo:
The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning-related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain, are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, presumably mediated by GABAergic interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolonged pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs. The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic control of LTD of cortical synapses onto striatal spiny projection neurons.