3 resultados para Lagrangian bounds in optimization problems
em Boston University Digital Common
Resumo:
We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.
Resumo:
We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.
Resumo:
A well-known paradigm for load balancing in distributed systems is the``power of two choices,''whereby an item is stored at the less loaded of two (or more) random alternative servers. We investigate the power of two choices in natural settings for distributed computing where items and servers reside in a geometric space and each item is associated with the server that is its nearest neighbor. This is in fact the backdrop for distributed hash tables such as Chord, where the geometric space is determined by clockwise distance on a one-dimensional ring. Theoretically, we consider the following load balancing problem. Suppose that servers are initially hashed uniformly at random to points in the space. Sequentially, each item then considers d candidate insertion points also chosen uniformly at random from the space,and selects the insertion point whose associated server has the least load. For the one-dimensional ring, and for Euclidean distance on the two-dimensional torus, we demonstrate that when n data items are hashed to n servers,the maximum load at any server is log log n / log d + O(1) with high probability. While our results match the well-known bounds in the standard setting in which each server is selected equiprobably, our applications do not have this feature, since the sizes of the nearest-neighbor regions around servers are non-uniform. Therefore, the novelty in our methods lies in developing appropriate tail bounds on the distribution of nearest-neighbor region sizes and in adapting previous arguments to this more general setting. In addition, we provide simulation results demonstrating the load balance that results as the system size scales into the millions.