3 resultados para Kepler, Johannes, 1571-1630.
em Boston University Digital Common
Resumo:
http://www.archive.org/details/missionarynature013246mbp
Resumo:
The explosion of WWW traffic necessitates an accurate picture of WWW use, and in particular requires a good understanding of client requests for WWW documents. To address this need, we have collected traces of actual executions of NCSA Mosaic, reflecting over half a million user requests for WWW documents. In this paper we describe the methods we used to collect our traces, and the formats of the collected data. Next, we present a descriptive statistical summary of the traces we collected, which identifies a number of trends and reference patterns in WWW use. In particular, we show that many characteristics of WWW use can be modelled using power-law distributions, including the distribution of document sizes, the popularity of documents as a function of size, the distribution of user requests for documents, and the number of references to documents as a function of their overall rank in popularity (Zipf's law). Finally, we show how the power-law distributions derived from our traces can be used to guide system designers interested in caching WWW documents.
Resumo:
A method for reconstructing 3D rational B-spline surfaces from multiple views is proposed. The method takes advantage of the projective invariance properties of rational B-splines. Given feature correspondences in multiple views, the 3D surface is reconstructed via a four step framework. First, corresponding features in each view are given an initial surface parameter value (s; t), and a 2D B-spline is fitted in each view. After this initialization, an iterative minimization procedure alternates between updating the 2D B-spline control points and re-estimating each feature's (s; t). Next, a non-linear minimization method is used to upgrade the 2D B-splines to 2D rational B-splines, and obtain a better fit. Finally, a factorization method is used to reconstruct the 3D B-spline surface given 2D B-splines in each view. This surface recovery method can be applied in both the perspective and orthographic case. The orthographic case allows the use of additional constraints in the recovery. Experiments with real and synthetic imagery demonstrate the efficacy of the approach for the orthographic case.