1 resultado para K-2
em Boston University Digital Common
Filtro por publicador
- Rhode Island School of Design (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- Aquatic Commons (41)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (10)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (86)
- Cochin University of Science & Technology (CUSAT), India (3)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (369)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (8)
- Publishing Network for Geoscientific & Environmental Data (54)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (80)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositorio Institucional de la Universidad Nacional Agraria (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (59)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (4)
Resumo:
We consider type systems that combine universal types, recursive types, and object types. We study type inference in these systems under a rank restriction, following Leivant's notion of rank. To motivate our work, we present several examples showing how our systems can be used to type programs encountered in practice. We show that type inference in the rank-k system is decidable for k ≤ 2 and undecidable for k ≥ 3. (Similar results based on different techniques are known to hold for System F, without recursive types and object types.) Our undecidability result is obtained by a reduction from a particular adaptation (which we call "regular") of the semi-unification problem and whose undecidability is, interestingly, obtained by methods totally different from those used in the case of standard (or finite) semi-unification.