2 resultados para Joint angles

em Boston University Digital Common


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A system for recovering 3D hand pose from monocular color sequences is proposed. The system employs a non-linear supervised learning framework, the specialized mappings architecture (SMA), to map image features to likely 3D hand poses. The SMA's fundamental components are a set of specialized forward mapping functions, and a single feedback matching function. The forward functions are estimated directly from training data, which in our case are examples of hand joint configurations and their corresponding visual features. The joint angle data in the training set is obtained via a CyberGlove, a glove with 22 sensors that monitor the angular motions of the palm and fingers. In training, the visual features are generated using a computer graphics module that renders the hand from arbitrary viewpoints given the 22 joint angles. We test our system both on synthetic sequences and on sequences taken with a color camera. The system automatically detects and tracks both hands of the user, calculates the appropriate features, and estimates the 3D hand joint angles from those features. Results are encouraging given the complexity of the task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.