4 resultados para Joint Compensation Scheme

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies suggest that income replacement is low for many workers with serious occupational injuries and illnesses. This review discusses three areas that hold promise for raising benefits to workers while reducing workers' compensation costs to employers: improving safety, containing medical costs, and reducing litigation. In theory, workers' compensation increases the costs to employers of injuries and so provides incentives to improve safety. Yet, taken as a whole, research does not provide convincing evidence that workers' compensation reduces injury rates. Moreover, unlike safety and health regulation, workers' compensation focuses the attention of employers on individual workers. High costs may lead employers to discourage claims and litigate when claims are filed. Controlling medical costs can reduce workers' compensation costs. Most studies, however, have focused on costs and have not addressed the effectiveness of medical care or patient satisfaction. Research also has shown that workers' compensation systems can reduce the need for litigation. Without litigation, benefits can be delivered more quickly and at lower costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [previous papers] we presented the design, specification and proof of correctness of a fully distributed location management scheme for PCS networks and argued that fully replicating location information is both appropriate and efficient for small PCS networks. In this paper, we analyze the performance of this scheme. Then, we extend the scheme in a hierarchical environment so as to scale to large PCS networks. Through extensive numerical results, we show the superiority of our scheme compared to the current IS-41 standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.