2 resultados para Japiks, Gijsbert, 1603-1666.

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prefetching has been shown to be an effective technique for reducing user perceived latency in distributed systems. In this paper we show that even when prefetching adds no extra traffic to the network, it can have serious negative performance effects. Straightforward approaches to prefetching increase the burstiness of individual sources, leading to increased average queue sizes in network switches. However, we also show that applications can avoid the undesirable queueing effects of prefetching. In fact, we show that applications employing prefetching can significantly improve network performance, to a level much better than that obtained without any prefetching at all. This is because prefetching offers increased opportunities for traffic shaping that are not available in the absence of prefetching. Using a simple transport rate control mechanism, a prefetching application can modify its behavior from a distinctly ON/OFF entity to one whose data transfer rate changes less abruptly, while still delivering all data in advance of the user's actual requests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.