3 resultados para Isomorphic coordinate projections

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report presents a combined solution for two problems, one: tracking objects in 3D space and estimating their trajectories and second: computing the similarity between previously estimated trajectories and clustering them using the similarities that we just computed. For the first part, trajectories are estimated using an EKF formulation that will provide the 3D trajectory up to a constant. To improve accuracy, when occlusions appear, multiple hypotheses are followed. For the second problem we compute the distances between trajectories using a similarity based on LCSS formulation. Similarities are computed between projections of trajectories on coordinate axes. Finally we group trajectories together based on previously computed distances, using a clustering algorithm. To check the validity of our approach, several experiments using real data were performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system is described that tracks moving objects in a video dataset so as to extract a representation of the objects' 3D trajectories. The system then finds hierarchical clusters of similar trajectories in the video dataset. Objects' motion trajectories are extracted via an EKF formulation that provides each object's 3D trajectory up to a constant factor. To increase accuracy when occlusions occur, multiple tracking hypotheses are followed. For trajectory-based clustering and retrieval, a modified version of edit distance, called longest common subsequence (LCSS) is employed. Similarities are computed between projections of trajectories on coordinate axes. Trajectories are grouped based, using an agglomerative clustering algorithm. To check the validity of the approach, experiments using real data were performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce Active Hidden Models (AHM) that utilize kernel methods traditionally associated with classification. We use AHMs to track deformable objects in video sequences by leveraging kernel projections. We introduce the "subset projection" method which improves the efficiency of our tracking approach by a factor of ten. We successfully tested our method on facial tracking with extreme head movements (including full 180-degree head rotation), facial expressions, and deformable objects. Given a kernel and a set of training observations, we derive unbiased estimates of the accuracy of the AHM tracker. Kernels are generally used in classification methods to make training data linearly separable. We prove that the optimal (minimum variance) tracking kernels are those that make the training observations linearly dependent.