8 resultados para Index nodes
em Boston University Digital Common
Resumo:
http://www.archive.org/details/encyclopaediamis02unknuoft
Resumo:
Based on our previous work in deformable shape model-based object detection, a new method is proposed that uses index trees for organizing shape features to support content-based retrieval applications. In the proposed strategy, different shape feature sets can be used in index trees constructed for object detection and shape similarity comparison respectively. There is a direct correspondence between the two shape feature sets. As a result, application-specific features can be obtained efficiently for shape-based retrieval after object detection. A novel approach is proposed that allows retrieval of images based on the population distribution of deformed shapes in each image. Experiments testing these new approaches have been conducted using an image database that contains blood cell micrographs. The precision vs. recall performance measure shows that our method is superior to previous methods.
Resumo:
This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.
Resumo:
We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.
Resumo:
An improved method for deformable shape-based image indexing and retrieval is described. A pre-computed index tree is used to improve the speed of our previously reported on-line model fitting method; simple shape features are used as keys in a pre-generated index tree of model instances. In addition, a coarse to fine indexing scheme is used at different levels of the tree to further improve speed while maintaining matching accuracy. Experimental results show that the speedup is significant, while accuracy of shape-based indexing is maintained. A method for shape population-based retrieval is also described. The method allows query formulation based on the population distributions of shapes in each image. Results of population-based image queries for a database of blood cell micrographs are shown.
Resumo:
In outsourced database (ODB) systems the database owner publishes its data through a number of remote servers, with the goal of enabling clients at the edge of the network to access and query the data more efficiently. As servers might be untrusted or can be compromised, query authentication becomes an essential component of ODB systems. Existing solutions for this problem concentrate mostly on static scenarios and are based on idealistic properties for certain cryptographic primitives. In this work, first we define a variety of essential and practical cost metrics associated with ODB systems. Then, we analytically evaluate a number of different approaches, in search for a solution that best leverages all metrics. Most importantly, we look at solutions that can handle dynamic scenarios, where owners periodically update the data residing at the servers. Finally, we discuss query freshness, a new dimension in data authentication that has not been explored before. A comprehensive experimental evaluation of the proposed and existing approaches is used to validate the analytical models and verify our claims. Our findings exhibit that the proposed solutions improve performance substantially over existing approaches, both for static and dynamic environments.
Resumo:
In an outsourced database system the data owner publishes information through a number of remote, untrusted servers with the goal of enabling clients to access and query the data more efficiently. As clients cannot trust servers, query authentication is an essential component in any outsourced database system. Clients should be given the capability to verify that the answers provided by the servers are correct with respect to the actual data published by the owner. While existing work provides authentication techniques for selection and projection queries, there is a lack of techniques for authenticating aggregation queries. This article introduces the first known authenticated index structures for aggregation queries. First, we design an index that features good performance characteristics for static environments, where few or no updates occur to the data. Then, we extend these ideas and propose more involved structures for the dynamic case, where the database owner is allowed to update the data arbitrarily. Our structures feature excellent average case performance for authenticating queries with multiple aggregate attributes and multiple selection predicates. We also implement working prototypes of the proposed techniques and experimentally validate the correctness of our ideas.
Resumo:
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.