5 resultados para Illuminated manuscripts

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On January 11, 2008, the National Institutes of Health ('NIH') adopted a revised Public Access Policy for peer-reviewed journal articles reporting research supported in whole or in part by NIH funds. Under the revised policy, the grantee shall ensure that a copy of the author's final manuscript, including any revisions made during the peer review process, be electronically submitted to the National Library of Medicine's PubMed Central ('PMC') archive and that the person submitting the manuscript will designate a time not later than 12 months after publication at which NIH may make the full text of the manuscript publicly accessible in PMC. NIH adopted this policy to implement a new statutory requirement under which: The Director of the National Institutes of Health shall require that all investigators funded by the NIH submit or have submitted for them to the National Library of Medicine's PubMed Central an electronic version of their final, peer-reviewed manuscripts upon acceptance for publication to be made publicly available no later than 12 months after the official date of publication: Provided, That the NIH shall implement the public access policy in a manner consistent with copyright law. This White Paper is written primarily for policymaking staff in universities and other institutional recipients of NIH support responsible for ensuring compliance with the Public Access Policy. The January 11, 2008, Public Access Policy imposes two new compliance mandates. First, the grantee must ensure proper manuscript submission. The version of the article to be submitted is the final version over which the author has control, which must include all revisions made after peer review. The statutory command directs that the manuscript be submitted to PMC 'upon acceptance for publication.' That is, the author's final manuscript should be submitted to PMC at the same time that it is sent to the publisher for final formatting and copy editing. Proper submission is a two-stage process. The electronic manuscript must first be submitted through a process that requires input of additional information concerning the article, the author(s), and the nature of NIH support for the research reported. NIH then formats the manuscript into a uniform, XML-based format used for PMC versions of articles. In the second stage of the submission process, NIH sends a notice to the Principal Investigator requesting that the PMC-formatted version be reviewed and approved. Only after such approval has grantee's manuscript submission obligation been satisfied. Second, the grantee also has a distinct obligation to grant NIH copyright permission to make the manuscript publicly accessible through PMC not later than 12 months after the date of publication. This obligation is connected to manuscript submission because the author, or the person submitting the manuscript on the author's behalf, must have the necessary rights under copyright at the time of submission to give NIH the copyright permission it requires. This White Paper explains and analyzes only the scope of the grantee's copyright-related obligations under the revised Public Access Policy and suggests six options for compliance with that aspect of the grantee's obligation. Time is of the essence for NIH grantees. As a practical matter, the grantee should have a compliance process in place no later than April 7, 2008. More specifically, the new Public Access Policy applies to any article accepted for publication on or after April 7, 2008 if the article arose under (1) an NIH Grant or Cooperative Agreement active in Fiscal Year 2008, (2) direct funding from an NIH Contract signed after April 7, 2008, (3) direct funding from the NIH Intramural Program, or (4) from an NIH employee. In addition, effective May 25, 2008, anyone submitting an application, proposal or progress report to the NIH must include the PMC reference number when citing articles arising from their NIH funded research. (This includes applications submitted to the NIH for the May 25, 2008 and subsequent due dates.) Conceptually, the compliance challenge that the Public Access Policy poses for grantees is easily described. The grantee must depend to some extent upon the author(s) to take the necessary actions to ensure that the grantee is in compliance with the Public Access Policy because the electronic manuscripts and the copyrights in those manuscripts are initially under the control of the author(s). As a result, any compliance option will require an explicit understanding between the author(s) and the grantee about how the manuscript and the copyright in the manuscript are managed. It is useful to conceptually keep separate the grantee's manuscript submission obligation from its copyright permission obligation because the compliance personnel concerned with manuscript management may differ from those responsible for overseeing the author's copyright management. With respect to copyright management, the grantee has the following six options: (1) rely on authors to manage copyright but also to request or to require that these authors take responsibility for amending publication agreements that call for transfer of too many rights to enable the author to grant NIH permission to make the manuscript publicly accessible ('the Public Access License'); (2) take a more active role in assisting authors in negotiating the scope of any copyright transfer to a publisher by (a) providing advice to authors concerning their negotiations or (b) by acting as the author's agent in such negotiations; (3) enter into a side agreement with NIH-funded authors that grants a non-exclusive copyright license to the grantee sufficient to grant NIH the Public Access License; (4) enter into a side agreement with NIH-funded authors that grants a non-exclusive copyright license to the grantee sufficient to grant NIH the Public Access License and also grants a license to the grantee to make certain uses of the article, including posting a copy in the grantee's publicly accessible digital archive or repository and authorizing the article to be used in connection with teaching by university faculty; (5) negotiate a more systematic and comprehensive agreement with the biomedical publishers to ensure either that the publisher has a binding obligation to submit the manuscript and to grant NIH permission to make the manuscript publicly accessible or that the author retains sufficient rights to do so; or (6) instruct NIH-funded authors to submit manuscripts only to journals with binding deposit agreements with NIH or to journals whose copyright agreements permit authors to retain sufficient rights to authorize NIH to make manuscripts publicly accessible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.METHODS:Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.RESULTS:The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 +/- 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency [greater than or equal to] 10%, genotype call rate [greater than or equal to] 80%, Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This file contains a finding aid for the Bulletin of the American Schools of Oriental Research (BASOR) Collection. To access the collection, please contact the archivist (asorarch@bu.edu) at the American Schools of Oriental Research, located at Boston University.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Khirbet et-Tannur Excavation Records document the 1938 excavation of a Nabataean temple. The excavation was directed by Nelson Glueck. The collection includes level books, excavation diaries, artifacts, and photographs. The collection is being processed. A finding aid for the document portion of the collection is available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.