3 resultados para IPv6, Denial of Service, Coloured Petri Nets, Risk Analysis, IPv6threats

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research have exposed new breeds of attacks that are capable of denying service or inflicting significant damage to TCP flows, without sustaining the attack traffic. Such attacks are often referred to as "low-rate" attacks and they stand in sharp contrast against traditional Denial of Service (DoS) attacks that can completely shut off TCP flows by flooding an Internet link. In this paper, we study the impact of these new breeds of attacks and the extent to which defense mechanisms are capable of mitigating the attack's impact. Through adopting a simple discrete-time model with a single TCP flow and a nonoblivious adversary, we were able to expose new variants of these low-rate attacks that could potentially have high attack potency per attack burst. Our analysis is focused towards worst-case scenarios, thus our results should be regarded as upper bounds on the impact of low-rate attacks rather than a real assessment under a specific attack scenario.