2 resultados para INDEPENDENCE

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common assumption made in traffic matrix (TM) modeling and estimation is independence of a packet's network ingress and egress. We argue that in real IP networks, this assumption should not and does not hold. The fact that most traffic consists of two-way exchanges of packets means that traffic streams flowing in opposite directions at any point in the network are not independent. In this paper we propose a model for traffic matrices based on independence of connections rather than packets. We argue that the independent connection (IC) model is more intuitive, and has a more direct connection to underlying network phenomena than the gravity model. To validate the IC model, we show that it fits real data better than the gravity model and that it works well as a prior in the TM estimation problem. We study the model's parameters empirically and identify useful stability properties. This justifies the use of the simpler versions of the model for TM applications. To illustrate the utility of the model we focus on two such applications: synthetic TM generation and TM estimation. To the best of our knowledge this is the first traffic matrix model that incorporates properties of bidirectional traffic.