5 resultados para Human Machine Interface
em Boston University Digital Common
Resumo:
We designed the Eyebrow-Clicker, a camera-based human computer interface system that implements a new form of binary switch. When the user raises his or her eyebrows, the binary switch is activated and a selection command is issued. The Eyebrow-Clicker thus replaces the "click" functionality of a mouse. The system initializes itself by detecting the user's eyes and eyebrows, tracks these features at frame rate, and recovers in the event of errors. The initialization uses the natural blinking of the human eye to select suitable templates for tracking. Once execution has begun, a user therefore never has to restart the program or even touch the computer. In our experiments with human-computer interaction software, the system successfully determined 93% of the time when a user raised his eyebrows.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.
Resumo:
Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.
Resumo:
Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.