3 resultados para Hilbert symbol
em Boston University Digital Common
Resumo:
Abstract is not available.
Resumo:
A quantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the interaction representation. The resulting configuration space is strongly related to that of the Stochastic Series Expansion (SSE) method, which is based on a direct power series expansion of exp(-beta*H). Sampling procedures previously developed for the SSE method can therefore be used also in the interaction representation formulation. The new method is first tested on the S=1/2 Heisenberg chain. Then, as an application to a model of great current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is implemented in the phonon occupation number basis, without Hilbert space truncations, and is exact. Results are presented for the magnetic properties of the system in a wide temperature regime, including the T-->0 limit where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed. The results suggest that the effects of dynamic phonons in spin-Peierls compounds such as GeCuO3 and NaV2O5 must be included in order to obtain a correct quantitative description of their magnetic properties, both above and below the dimerization temperature.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.