2 resultados para Health Action Process Approach
em Boston University Digital Common
Resumo:
The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.
Resumo:
Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.