2 resultados para Guicciardini, Francesco.
em Boston University Digital Common
Resumo:
We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.
Resumo:
Large probabilistic graphs arise in various domains spanning from social networks to biological and communication networks. An important query in these graphs is the k nearest-neighbor query, which involves finding and reporting the k closest nodes to a specific node. This query assumes the existence of a measure of the "proximity" or the "distance" between any two nodes in the graph. To that end, we propose various novel distance functions that extend well known notions of classical graph theory, such as shortest paths and random walks. We argue that many meaningful distance functions are computationally intractable to compute exactly. Thus, in order to process nearest-neighbor queries, we resort to Monte Carlo sampling and exploit novel graph-transformation ideas and pruning opportunities. In our extensive experimental analysis, we explore the trade-offs of our approximation algorithms and demonstrate that they scale well on real-world probabilistic graphs with tens of millions of edges.