2 resultados para Guarini, Battista, 1538-1612.
em Boston University Digital Common
Resumo:
The Border Gateway Protocol (BGP) is an interdomain routing protocol that allows each Autonomous System (AS) to define its own routing policies independently and use them to select the best routes. By means of policies, ASes are able to prevent some traffic from accessing their resources, or direct their traffic to a preferred route. However, this flexibility comes at the expense of a possibility of divergence behavior because of mutually conflicting policies. Since BGP is not guaranteed to converge even in the absence of network topology changes, it is not safe. In this paper, we propose a randomized approach to providing safety in BGP. The proposed algorithm dynamically detects policy conflicts, and tries to eliminate the conflict by changing the local preference of the paths involved. Both the detection and elimination of policy conflicts are performed locally, i.e. by using only local information. Randomization is introduced to prevent synchronous updates of the local preferences of the paths involved in the same conflict.
Resumo:
Reliability and availability have long been considered twin system properties that could be enhanced by distribution. Paradoxically, the traditional definitions of these properties do not recognize the positive impact of recovery as distinct from simple repair and restart on reliability, nor the negative effect of recovery, and of internetworking of clients and servers, on availability. As a result of employing the standard definitions, reliability would tend to be underestimated, and availability overestimated. We offer revised definitions of these two critical metrics, which we call service reliability and service availability, that improve the match between their formal expression, and intuitive meaning. A fortuitous advantage of our approach is that the product of our two metrics yields a highly meaningful figure of merit for the overall dependability of a system. But techniques that enhance system dependability exact a performance cost, so we conclude with a cohesive definition of performability that rewards the system for performance that is delivered to its client applications, after discounting the following consequences of failure: service denial and interruption, lost work, and recovery cost.