6 resultados para Graph mining

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. In this paper, we adopt a different approach, based on estimating the isoperimetric constant of an image graph. Our algorithm produces the high quality segmentations and data clustering of spectral methods, but with improved speed and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Office of Naval Research (N00014-01-1-0624)