8 resultados para Goal Programming

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inferring types for polymorphic recursive function definitions (abbreviated to polymorphic recursion) is a recurring topic on the mailing lists of popular typed programming languages. This is despite the fact that type inference for polymorphic recursion using for all-types has been proved undecidable. This report presents several programming examples involving polymorphic recursion and determines their typability under various type systems, including the Hindley-Milner system, an intersection-type system, and extensions of these two. The goal of this report is to show that many of these examples are typable using a system of intersection types as an alternative form of polymorphism. By accomplishing this, we hope to lay the foundation for future research into a decidable intersection-type inference algorithm. We do not provide a comprehensive survey of type systems appropriate for polymorphic recursion, with or without type annotations inserted in the source language. Rather, we focus on examples for which types may be inferred without type annotations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SNBENCH is a general-purpose programming environment and run-time system targeted towards a variety of Sensor applications such as environmental sensing, location sensing, video sensing, etc. In its current structure, the run-time engine of the SNBENCH namely, the Sensorium Execution Environment (SXE) processes the entities of execution in a single thread of operation. In order to effectively support applications that are time-sensitive and need priority, it is imperative to process the tasks discretely so that specific policies can be applied at a much granular level. The goal of this project was to modify the SXE to enable efficient use of system resources by way of multi-tasking the individual components. Additionally, the transformed SXE offers the ability to classify and employ different schemes of processing to the individual tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.