5 resultados para Global circular shortest path

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two algorithms for computing distances along a non-convex polyhedral surface. The first algorithm computes exact minimal-geodesic distances and the second algorithm combines these distances to compute exact shortest-path distances along the surface. Both algorithms have been extended to compute the exact minimalgeodesic paths and shortest paths. These algorithms have been implemented and validated on surfaces for which the correct solutions are known, in order to verify the accuracy and to measure the run-time performance, which is cubic or less for each algorithm. The exact-distance computations carried out by these algorithms are feasible for large-scale surfaces containing tens of thousands of vertices, and are a necessary component of near-isometric surface flattening methods that accurately transform curved manifolds into flat representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MPLS (Multi-Protocol Label Switching) has recently emerged to facilitate the engineering of network traffic. This can be achieved by directing packet flows over paths that satisfy multiple requirements. MPLS has been regarded as an enhancement to traditional IP routing, which has the following problems: (1) all packets with the same IP destination address have to follow the same path through the network; and (2) paths have often been computed based on static and single link metrics. These problems may cause traffic concentration, and thus degradation in quality of service. In this paper, we investigate by simulations a range of routing solutions and examine the tradeoff between scalability and performance. At one extreme, IP packet routing using dynamic link metrics provides a stateless solution but may lead to routing oscillations. At the other extreme, we consider a recently proposed Profile-based Routing (PBR), which uses knowledge of potential ingress-egress pairs as well as the traffic profile among them. Minimum Interference Routing (MIRA) is another recently proposed MPLS-based scheme, which only exploits knowledge of potential ingress-egress pairs but not their traffic profile. MIRA and the more conventional widest-shortest path (WSP) routing represent alternative MPLS-based approaches on the spectrum of routing solutions. We compare these solutions in terms of utility, bandwidth acceptance ratio as well as their scalability (routing state and computational overhead) and load balancing capability. While the simplest of the per-flow algorithms we consider, the performance of WSP is close to dynamic per-packet routing, without the potential instabilities of dynamic routing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.