2 resultados para Germanías, 1519-1523
em Boston University Digital Common
Resumo:
This paper introduces BoostMap, a method that can significantly reduce retrieval time in image and video database systems that employ computationally expensive distance measures, metric or non-metric. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. Embedding construction is formulated as a machine learning task, where AdaBoost is used to combine many simple, 1D embeddings into a multidimensional embedding that preserves a significant amount of the proximity structure in the original space. Performance is evaluated in a hand pose estimation system, and a dynamic gesture recognition system, where the proposed method is used to retrieve approximate nearest neighbors under expensive image and video similarity measures. In both systems, BoostMap significantly increases efficiency, with minimal losses in accuracy. Moreover, the experiments indicate that BoostMap compares favorably with existing embedding methods that have been employed in computer vision and database applications, i.e., FastMap and Bourgain embeddings.
Resumo:
We consider the problem of efficiently and fairly allocating bandwidth at a highly congested link to a diverse set of flows, including TCP flows with various Round Trip Times (RTT), non-TCP-friendly flows such as Constant-Bit-Rate (CBR) applications using UDP, misbehaving, or malicious flows. Though simple, a FIFO queue management is vulnerable. Fair Queueing (FQ) can guarantee max-min fairness but fails at efficiency. RED-PD exploits the history of RED's actions in preferentially dropping packets from higher-rate flows. Thus, RED-PD attempts to achieve fairness at low cost. By relying on RED's actions, RED-PD turns out not to be effective in dealing with non-adaptive flows in settings with a highly heterogeneous mix of flows. In this paper, we propose a new approach we call RED-NB (RED with No Bias). RED-NB does not rely on RED's actions. Rather it explicitly maintains its own history for the few high-rate flows. RED-NB then adaptively adjusts flow dropping probabilities to achieve max-min fairness. In addition, RED-NB helps RED itself at very high loads by tuning RED's dropping behavior to the flow characteristics (restricted in this paper to RTTs) to eliminate its bias against long-RTT TCP flows while still taking advantage of RED's features at low loads. Through extensive simulations, we confirm the fairness of RED-NB and show that it outperforms RED, RED-PD, and CHOKe in all scenarios.