7 resultados para Galaxies : Clusters : General
em Boston University Digital Common
Resumo:
A sermon preached to the General Assembly reporting on the mission efforts of the church.
Resumo:
http://www.archive.org/details/encyclopaediamis02unknuoft
Resumo:
http://www.archive.org/details/worldmissionofth012478mbp
Resumo:
BACKGROUND:Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus oocytes.DESCRIPTION:In order to facilitate the identification of genes possessing clusters of repeats that regulate post-transcriptional aspects of gene expression in mammalian genes, we used REPFIND to create a database of all repeated motifs in the 3' untranslated regions (UTR) of genes from the Mammalian Gene Collection (MGC). The MGC database includes seven vertebrate species: human, cow, rat, mouse and three non-mammalian vertebrate species. A web-based application was developed to search this database of repeated motifs to generate species-specific lists of genes containing specific classes of repeats in their 3'-UTRs. This computational tool is called 3'-UTR SIRF (Short Interspersed Repeat Finder), and it reveals that hundreds of human genes contain an abundance of short CAC-rich and CAG-rich repeats in their 3'-UTRs that are similar to those found in mRNAs localized to the neurites of neurons. We tested four candidate mRNAs for localization in rat hippocampal neurons by in situ hybridization. Our results show that two candidate CAC-rich (Syntaxin 1B and Tubulin beta4) and two candidate CAG-rich (Sec61alpha and Syntaxin 1A) mRNAs are localized to distal neurites, whereas two control mRNAs lacking repeated motifs in their 3'-UTR remain primarily in the cell body.CONCLUSION:Computational data generated with 3'-UTR SIRF indicate that hundreds of mammalian genes have an abundance of short CA-containing motifs that may direct mRNA localization in neurons. In situ hybridization shows that four candidate mRNAs are localized to distal neurites of cultured hippocampal neurons. These data suggest that short CA-containing motifs may be part of a widely utilized genetic code that regulates mRNA localization in vertebrate cells. The use of 3'-UTR SIRF to search for new classes of motifs that regulate other aspects of gene expression should yield important information in future studies addressing cis-regulatory information located in 3'-UTRs.
Resumo:
Various restrictions on the terms allowed for substitution give rise to different cases of semi-unification. Semi-unification on finite and regular terms has already been considered in the literature. We introduce a general case of semi-unification where substitutions are allowed on non-regular terms, and we prove the equivalence of this general case to a well-known undecidable data base dependency problem, thus establishing the undecidability of general semi-unification. We present a unified way of looking at the various problems of semi-unification. We give some properties that are common to all the cases of semi-unification. We also the principality property and the solution set for those problems. We prove that semi-unification on general terms has the principality property. Finally, we present a recursive inseparability result between semi-unification on regular terms and semi-unification on general terms.
Resumo:
A new approach is proposed for clustering time-series data. The approach can be used to discover groupings of similar object motions that were observed in a video collection. A finite mixture of hidden Markov models (HMMs) is fitted to the motion data using the expectation-maximization (EM) framework. Previous approaches for HMM-based clustering employ a k-means formulation, where each sequence is assigned to only a single HMM. In contrast, the formulation presented in this paper allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. Experiments with simulated data demonstrate the benefit of using this EM-based approach when there is more "overlap" in the processes generating the data. Experiments with real data show the promising potential of HMM-based motion clustering in a number of applications.
Resumo:
The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.