3 resultados para GREMLIN-MEDIATED DECREASE

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulations we study a coarse­grained model of a water layer confined in a fixed disordered matrix of hydrophobic nanoparticles at different particle concentrations c. For c = 0 we find a 1st order liquid­liquid phase transition (LLPT) ending in one critical point at low pressure P. For c > 0 our simulations are consistent with a LLPT line ending in two critical points at low and high pressure. For c = 25% at high P and low temperature T we find a dramatic decrease of compressibility, thermal expansion coefficient, and specific heat. Surprisingly, the effect is present also for c as low as 2.4%. We conclude that even a small presence of nanoscopic hydrophobes can drastically suppress thermodynamic fluctuations, making the detection of the LLPT more difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communities of faith have appeared online since the inception of computer -­ mediated communication (CMC)and are now ubiquitous. Yet the character and legitimacy of Internet communities as ecclesial bodies is often disputed by traditional churches; and the Internet's ability to host the church as church for online Christians remains a question. This dissertation carries out a practical theological conversation between three main sources: the phenomenon of the church online; ecclesiology (especially that characteristic of Reformed communities); and communication theory. After establishing the need for this study in Chapter 1, Chapter 2 investigates the online presence of Christians and trends in their Internet use, including its history and current expressions. Chapter 3 sets out an historical overview of the Reformed Tradition, focusing on the work of John Calvin and Karl Barth, as well as more contemporary theologians. With a theological context in which to consider online churches in place, Chapter 4 introduces four theological themes prominent in both ecclesiology and CMC studies: authority; community; mediation; and embodiment. These themes constitute the primary lens through which the dissertation conducts a critical-­confessional interface between communication theory and ecclesiology in the examination of CMC. Chapter 5 continues the contextualization of online churches with consideration of communication theories that impact CMC, focusing on three major communication theories: Narrative Theory; Interpretive Theory; and Speech Act Theory. Chapter 6 contains the critical conversation between ecclesiology and communication theory by correlating the aforementioned communication theories with Narrative Theology, Communities of Practice, and Theo-­Drama, and applying these to the four theological themes noted above. In addition, new or anticipated developments in CMC investigated in relationship to traditional ecclesiologies and the prospect of cyber-­ecclesiology. Chapter 7 offers an evaluative tool consisting of a three-­step hermeneutical process that examines: 1) the history, tradition, and ecclesiology of the particular community being evaluated; 2) communication theories and the process of religious-­social shaping of technology; and 3) CMC criteria for establishing the presence of a stable, interactive, and relational community. As this hermeneutical process unfolds, it holds the church at the center of the process, seeking a contextual yet faithful understanding of the church.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.