1 resultado para Fragment Fab’
em Boston University Digital Common
Filtro por publicador
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bibloteca do Senado Federal do Brasil (143)
- Biodiversity Heritage Library, United States (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Boston University Digital Common (1)
- Brock University, Canada (12)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (17)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (20)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (43)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (32)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (33)
- Harvard University (25)
- Helda - Digital Repository of University of Helsinki (30)
- Indian Institute of Science - Bangalore - Índia (128)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (34)
- Ohio University (15)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (122)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (50)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- South Carolina State Documents Depository (2)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (11)
- University of Connecticut - USA (1)
- University of Michigan (72)
- University of Queensland eSpace - Australia (4)
- WestminsterResearch - UK (1)
Resumo:
We study the problem of type inference for a family of polymorphic type disciplines containing the power of Core-ML. This family comprises all levels of the stratification of the second-order lambda-calculus by "rank" of types. We show that typability is an undecidable problem at every rank k ≥ 3 of this stratification. While it was already known that typability is decidable at rank ≤ 2, no direct and easy-to-implement algorithm was available. To design such an algorithm, we develop a new notion of reduction and show how to use it to reduce the problem of typability at rank 2 to the problem of acyclic semi-unification. A by-product of our analysis is the publication of a simple solution procedure for acyclic semi-unification.