2 resultados para Formal analysis

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NetSketch is a tool for the specification of constrained-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system while retaining sufficient information about it to carry out future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis. The compositional analysis is based on a strongly-typed Domain-Specific Language (DSL) for describing and reasoning about constrained-flow networks at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity. In a companion paper [6], we overview NetSketch, highlight its salient features, and illustrate how it could be used in two applications: the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications).