5 resultados para Fine-grained
em Boston University Digital Common
Resumo:
Traditional approaches to receiver-driven layered multicast have advocated the benefits of cumulative layering, which can enable coarse-grained congestion control that complies with TCP-friendliness equations over large time scales. In this paper, we quantify the costs and benefits of using non-cumulative layering and present a new, scalable multicast congestion control scheme which provides a fine-grained approximation to the behavior of TCP additive increase/multiplicative decrease (AIMD). In contrast to the conventional wisdom, we demonstrate that fine-grained rate adjustment can be achieved with only modest increases in the number of layers and aggregate bandwidth consumption, while using only a small constant number of control messages to perform either additive increase or multiplicative decrease.
Resumo:
Extensible systems allow services to be configured and deployed for the specific needs of individual applications. This paper describes a safe and efficient method for user-level extensibility that requires only minimal changes to the kernel. A sandboxing technique is described that supports multiple logical protection domains within the same address space at user-level. This approach allows applications to register sandboxed code with the system, that may be executed in the context of any process. Our approach differs from other implementations that require special hardware support, such as segmentation or tagged translation look-aside buffers (TLBs), to either implement multiple protection domains in a single address space, or to support fast switching between address spaces. Likewise, we do not require the entire system to be written in a type-safe language, to provide fine-grained protection domains. Instead, our user-level sandboxing technique requires only paged-based virtual memory support, and the requirement that extension code is written either in a type-safe language, or by a trusted source. Using a fast method of upcalls, we show how our sandboxing technique for implementing logical protection domains provides significant performance improvements over traditional methods of invoking user-level services. Experimental results show our approach to be an efficient method for extensibility, with inter-protection domain communication costs close to those of hardware-based solutions leveraging segmentation.
Resumo:
The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.
Resumo:
Growing interest in inference and prediction of network characteristics is justified by its importance for a variety of network-aware applications. One widely adopted strategy to characterize network conditions relies on active, end-to-end probing of the network. Active end-to-end probing techniques differ in (1) the structural composition of the probes they use (e.g., number and size of packets, the destination of various packets, the protocols used, etc.), (2) the entity making the measurements (e.g. sender vs. receiver), and (3) the techniques used to combine measurements in order to infer specific metrics of interest. In this paper, we present Periscope: a Linux API that enables the definition of new probing structures and inference techniques from user space through a flexible interface. PeriScope requires no support from clients beyond the ability to respond to ICMP ECHO REQUESTs and is designed to minimize user/kernel crossings and to ensure various constraints (e.g., back-to-back packet transmissions, fine-grained timing measurements) We show how to use Periscope for two different probing purposes, namely the measurement of shared packet losses between pairs of endpoints and for the measurement of subpath bandwidth. Results from Internet experiments for both of these goals are also presented.
Resumo:
Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.