1 resultado para Financial gain
em Boston University Digital Common
Filtro por publicador
- JISC Information Environment Repository (2)
- Repository Napier (1)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (200)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (97)
- CentAUR: Central Archive University of Reading - UK (2)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (79)
- Cochin University of Science & Technology (CUSAT), India (14)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (26)
- Indian Institute of Science - Bangalore - Índia (29)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (167)
- Queensland University of Technology - ePrints Archive (172)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (27)
- School of Medicine, Washington University, United States (4)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (7)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (23)
- University of Washington (2)
- WestminsterResearch - UK (14)
Resumo:
Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.