1 resultado para Financial Statement
em Boston University Digital Common
Filtro por publicador
- JISC Information Environment Repository (2)
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (15)
- Archive of European Integration (271)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (4)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (1)
- Brock University, Canada (33)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (53)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (6)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (22)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (11)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (117)
- Queensland University of Technology - ePrints Archive (164)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (26)
- School of Medicine, Washington University, United States (10)
- South Carolina State Documents Depository (50)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad del Rosario, Colombia (15)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (18)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (3)
- University of Washington (2)
- WestminsterResearch - UK (13)
Resumo:
Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.