1 resultado para Financial Reporting
em Boston University Digital Common
Filtro por publicador
- JISC Information Environment Repository (2)
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (3)
- Aquatic Commons (19)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (1)
- Brock University, Canada (12)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (17)
- Center for Jewish History Digital Collections (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons at Florida International University (7)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (25)
- Indian Institute of Science - Bangalore - Índia (6)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (31)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (158)
- Queensland University of Technology - ePrints Archive (307)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (31)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Técnica de Lisboa (2)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (21)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (2)
- University of Washington (1)
- WestminsterResearch - UK (14)
Resumo:
Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.