4 resultados para Feeling of safety
em Boston University Digital Common
Resumo:
Formal correctness of complex multi-party network protocols can be difficult to verify. While models of specific fixed compositions of agents can be checked against design constraints, protocols which lend themselves to arbitrarily many compositions of agents-such as the chaining of proxies or the peering of routers-are more difficult to verify because they represent potentially infinite state spaces and may exhibit emergent behaviors which may not materialize under particular fixed compositions. We address this challenge by developing an algebraic approach that enables us to reduce arbitrary compositions of network agents into a behaviorally-equivalent (with respect to some correctness property) compact, canonical representation, which is amenable to mechanical verification. Our approach consists of an algebra and a set of property-preserving rewrite rules for the Canonical Homomorphic Abstraction of Infinite Network protocol compositions (CHAIN). Using CHAIN, an expression over our algebra (i.e., a set of configurations of network protocol agents) can be reduced to another behaviorally-equivalent expression (i.e., a smaller set of configurations). Repeated applications of such rewrite rules produces a canonical expression which can be checked mechanically. We demonstrate our approach by characterizing deadlock-prone configurations of HTTP agents, as well as establishing useful properties of an overlay protocol for scheduling MPEG frames, and of a protocol for Web intra-cache consistency.
Resumo:
We survey several of the research efforts pursued by the iBench and snBench projects in the CS Department at Boston University over the last half dozen years. These activities use ideas and methodologies inspired by recent developments in other parts of computer science -- particularly in formal methods and in the foundations of programming languages -- but now specifically applied to the certification of safety-critical networking systems. This is research jointly led by Azer Bestavros and Assaf Kfoury with the participation of Adam Bradley, Andrei Lapets, and Michael Ocean.
Resumo:
NetSketch is a tool that enables the specification of network-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system so as to retain sufficient enough details to enable future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis approach based on a strongly-typed, Domain-Specific Language (DSL) to specify network configurations at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we overview NetSketch, highlight its salient features, and illustrate how it could be used in applications, including the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications). In a companion paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity.
Resumo:
NetSketch is a tool for the specification of constrained-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system while retaining sufficient information about it to carry out future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis. The compositional analysis is based on a strongly-typed Domain-Specific Language (DSL) for describing and reasoning about constrained-flow networks at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity. In a companion paper [6], we overview NetSketch, highlight its salient features, and illustrate how it could be used in two applications: the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications).