2 resultados para Fading

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the design principles of TCP within the context of heterogeneous wired/wireless networks and mobile networking. We identify three shortcomings in TCP's behavior: (i) the protocol's error detection mechanism, which does not distinguish different types of errors and thus does not suffice for heterogeneous wired/wireless environments, (ii) the error recovery, which is not responsive to the distinctive characteristics of wireless networks such as transient or burst errors due to handoffs and fading channels, and (iii) the protocol strategy, which does not control the tradeoff between performance measures such as goodput and energy consumption, and often entails a wasteful effort of retransmission and energy expenditure. We discuss a solution-framework based on selected research proposals and the associated evaluation criteria for the suggested modifications. We highlight an important angle that did not attract the required attention so far: the need for new performance metrics, appropriate for evaluating the impact of protocol strategies on battery-powered devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization18, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.