2 resultados para Face detection
em Boston University Digital Common
Resumo:
A common design of an object recognition system has two steps, a detection step followed by a foreground within-class classification step. For example, consider face detection by a boosted cascade of detectors followed by face ID recognition via one-vs-all (OVA) classifiers. Another example is human detection followed by pose recognition. Although the detection step can be quite fast, the foreground within-class classification process can be slow and becomes a bottleneck. In this work, we formulate a filter-and-refine scheme, where the binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the FRGC V2 data set, hand shape detection and parameter estimation on a hand data set and vehicle detection and view angle estimation on a multi-view vehicle data set. On all data sets, our approach has comparable accuracy and is at least five times faster than the brute force approach.
Resumo:
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.