1 resultado para FIXED-BED REACTOR
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (26)
- Aston University Research Archive (47)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (88)
- CentAUR: Central Archive University of Reading - UK (2)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (195)
- Cochin University of Science & Technology (CUSAT), India (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons at Florida International University (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (116)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (24)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (103)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (53)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (8)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (27)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (13)
- University of Washington (2)
Resumo:
We prove that first order logic is strictly weaker than fixed point logic over every infinite classes of finite ordered structures with unary relations: Over these classes there is always an inductive unary relation which cannot be defined by a first-order formula, even when every inductive sentence (i.e., closed formula) can be expressed in first-order over this particular class. Our proof first establishes a property valid for every unary relation definable by first-order logic over these classes which is peculiar to classes of ordered structures with unary relations. In a second step we show that this property itself can be expressed in fixed point logic and can be used to construct a non-elementary unary relation.