2 resultados para Expanded Cinema

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many kinds of human states of consciousness have been distinguished, including colourful or anomalous experiences that are felt to have spiritual significance by most people who have them. The neurosciences have isolated brain-state correlates for some of these colourful states of consciousness, thereby strengthening the hypothesis that these experiences are mediated by the brain. This result both challenges metaphysically dualist accounts of human nature and suggests that any adequate causal explanation of colourful experiences would have to make detailed reference to the evolutionary and genetic conditions that give rise to brains capable of such conscious phenomena. This paper quickly surveys types of conscious states and neurological interpretations of them. In order to deal with the question of the significance of such experiences, the paper then attempts to identify evolutionary and genetic constraints on proposals for causal explanations of such experiences. The conclusion is that a properly sensitive evolutionary account of human consciousness supports a rebuttal of the argument that the cognitive content of colourful experiences is pure delusion, but that this evolutionary account also heavily constrains what might be inferred theologically from such experiences. They are not necessarily delusory, therefore, but they are often highly misleading. Their significance must be construed consistently with this conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.