3 resultados para Event-based timing
em Boston University Digital Common
Resumo:
We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.
Resumo:
This paper describes a prototype implementation of a Distributed File System (DFS) based on the Adaptive Information Dispersal Algorithm (AIDA). Using AIDA, a file block is encoded and dispersed into smaller blocks stored on a number of DFS nodes distributed over a network. The implementation devises file creation, read, and write operations. In particular, when reading a file, the DFS accepts an optional timing constraint, which it uses to determine the level of redundancy needed for the read operation. The tighter the timing constraint, the more nodes in the DFS are queried for encoded blocks. Write operations update all blocks in all DFS nodes--with future implementations possibly including the use of read and write quorums. This work was conducted under the supervision of Professor Azer Bestavros (best@cs.bu.edu) in the Computer Science Department as part of Mohammad Makarechian's Master's project.
Resumo:
The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.