1 resultado para Escape From Vehicle.
em Boston University Digital Common
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (7)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (26)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (25)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (14)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (17)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (167)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (51)
- Queensland University of Technology - ePrints Archive (193)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (65)
- Research Open Access Repository of the University of East London. (2)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (4)
- Université de Montréal (1)
- Université de Montréal, Canada (18)
- University of Connecticut - USA (1)
- University of Michigan (42)
- University of Queensland eSpace - Australia (5)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.