1 resultado para Erasmus, Desiderius, -1536
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Biblioteca Digital Loyola - Universidad de Deusto (38)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (30)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (63)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (28)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (36)
- Cochin University of Science & Technology (CUSAT), India (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Peer Publishing (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (11)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (45)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (10)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (5)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (5)
- Ministerio de Cultura, Spain (61)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (78)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (12)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (94)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (3)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (20)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (16)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (168)
- University of Queensland eSpace - Australia (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.