3 resultados para Equivalence Proof
em Boston University Digital Common
Resumo:
There are several proofs now for the stability of Toom's example of a two-dimensional stable cellular automaton and its application to fault-tolerant computation. Simon and Berman simplified and strengthened Toom's original proof: the present report is simplified exposition of their proof.
Resumo:
A neural network is introduced which provides a solution of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space. To do this, the network self-organizes a mapping from motion directions in 3-D space to velocity commands in joint space. Computer simulations demonstrate that, without any additional learning, the network can generate accurate movement commands that compensate for variable tool lengths, clamping of joints, distortions of visual input by a prism, and unexpected limb perturbations. Blind reaches have also been simulated.