1 resultado para Epidemiological surveillance - hospitals
em Boston University Digital Common
Filtro por publicador
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (5)
- ARCA - Repositório Institucional da FIOCRUZ (3)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (1)
- Brock University, Canada (5)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (45)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (5)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (15)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (30)
- Indian Institute of Science - Bangalore - Índia (10)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (110)
- Queensland University of Technology - ePrints Archive (216)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (118)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (27)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (17)
- Université de Montréal (1)
- Université de Montréal, Canada (31)
- University of Queensland eSpace - Australia (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.