2 resultados para Effective medium theory
em Boston University Digital Common
Resumo:
In the ocean, natural and artificial processes generate clouds of bubbles which scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. Theory to explain this behavior exists in the literature, and is adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for comparison. An impedance tube was developed specifically for exploring this regime. Using the instrument, unique phase speed and attenuation measurements were made for void fractions ranging from 6.2 × 10^−5 to 2.7 × 10^−3 and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. Behavior at resonance was observed to be sensitive to the bubble population statistics and agreed with existing theory, within the uncertainty of the bubble population parameters. Scattering from acoustically compact bubble clouds can be predicted from classical scattering theory by using an effective medium description of the bubbly fluid interior. Experimental verification was previously obtained up to the lowest resonance frequency. A novel bubble production technique has been employed to obtain unique scattering measurements with a bubbly-liquid-filled latex tube in a large indoor tank. The effective scattering model described these measurements up to three times the lowest resonance frequency of the structure.
Resumo:
Sound propagation in shallow water is characterized by interaction with the oceans surface, volume, and bottom. In many coastal margin regions, including the Eastern U.S. continental shelf and the coastal seas of China, the bottom is composed of a depositional sandy-silty top layer. Previous measurements of narrow and broadband sound transmission at frequencies from 100 Hz to 1 kHz in these regions are consistent with waveguide calculations based on depth and frequency dependent sound speed, attenuation and density profiles. Theoretical predictions for the frequency dependence of attenuation vary from quadratic for the porous media model of M.A. Biot to linear for various competing models. Results from experiments performed under known conditions with sandy bottoms, however, have agreed with attenuation proportional to f1.84, which is slightly less than the theoretical value of f2 [Zhou and Zhang, J. Acoust. Soc. Am. 117, 2494]. This dissertation presents a reexamination of the fundamental considerations in the Biot derivation and leads to a simplification of the theory that can be coupled with site-specific, depth dependent attenuation and sound speed profiles to explain the observed frequency dependence. Long-range sound transmission measurements in a known waveguide can be used to estimate the site-specific sediment attenuation properties, but the costs and time associated with such at-sea experiments using traditional measurement techniques can be prohibitive. Here a new measurement tool consisting of an autonomous underwater vehicle and a small, low noise, towed hydrophone array was developed and used to obtain accurate long-range sound transmission measurements efficiently and cost effectively. To demonstrate this capability and to determine the modal and intrinsic attenuation characteristics, experiments were conducted in a carefully surveyed area in Nantucket Sound. A best-fit comparison between measured results and calculated results, while varying attenuation parameters, revealed the estimated power law exponent to be 1.87 between 220.5 and 1228 Hz. These results demonstrate the utility of this new cost effective and accurate measurement system. The sound transmission results, when compared with calculations based on the modified Biot theory, are shown to explain the observed frequency dependence.