2 resultados para Edge detector
em Boston University Digital Common
Resumo:
As new multi-party edge services are deployed on the Internet, application-layer protocols with complex communication models and event dependencies are increasingly being specified and adopted. To ensure that such protocols (and compositions thereof with existing protocols) do not result in undesirable behaviors (e.g., livelocks) there needs to be a methodology for the automated checking of the "safety" of these protocols. In this paper, we present ingredients of such a methodology. Specifically, we show how SPIN, a tool from the formal systems verification community, can be used to quickly identify problematic behaviors of application-layer protocols with non-trivial communication models—such as HTTP with the addition of the "100 Continue" mechanism. As a case study, we examine several versions of the specification for the Continue mechanism; our experiments mechanically uncovered multi-version interoperability problems, including some which motivated revisions of HTTP/1.1 and some which persist even with the current version of the protocol. One such problem resembles a classic degradation-of-service attack, but can arise between well-meaning peers. We also discuss how the methods we employ can be used to make explicit the requirements for hardening a protocol's implementation against potentially malicious peers, and for verifying an implementation's interoperability with the full range of allowable peer behaviors.
Resumo:
A common design of an object recognition system has two steps, a detection step followed by a foreground within-class classification step. For example, consider face detection by a boosted cascade of detectors followed by face ID recognition via one-vs-all (OVA) classifiers. Another example is human detection followed by pose recognition. Although the detection step can be quite fast, the foreground within-class classification process can be slow and becomes a bottleneck. In this work, we formulate a filter-and-refine scheme, where the binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the FRGC V2 data set, hand shape detection and parameter estimation on a hand data set and vehicle detection and view angle estimation on a multi-view vehicle data set. On all data sets, our approach has comparable accuracy and is at least five times faster than the brute force approach.