8 resultados para Durand border
em Boston University Digital Common
Resumo:
http://www.archive.org/details/blackrobesorsket00nevirich
Resumo:
This project investigates how religious music, invested with symbolic and cultural meaning, provided African Americans in border city churches with a way to negotiate conflict, assert individual values, and establish a collective identity in the post- emancipation era. In order to focus on the encounter between former slaves and free Blacks, the dissertation examines black churches that received large numbers of southern migrants during and after the Civil War. Primarily a work of history, the study also employs insights and conceptual frameworks from other disciplines including anthropology and ritual studies, African American studies, aesthetic theory, and musicology. It is a work of historical reconstruction in the tradition of scholarship that some have called "lived religion." Chapter 1 introduces the dissertation topic and explains how it contributes to scholarship. Chapter 2 examines social and religious conditions African Americans faced in Baltimore, MD, Philadelphia, PA, and Washington, DC to show why the Black Church played a key role in African Americans' adjustment to post-emancipation life. Chapter 3 compares religious slave music and free black church music to identify differences and continuities between them, as well as their functions in religious settings. Chapters 4, 5, and 6 present case studies on Bethel African Methodist Episcopal Church (Baltimore), Zoar Methodist Episcopal Church (Philadelphia), and St. Luke’s Protestant Episcopal Church (Washington, DC), respectively. Informed by fresh archival materials, the dissertation shows how each congregation used its musical life to uphold values like education and community, to come to terms with a shared experience, and to confront or avert authority when cultural priorities were threatened. By arguing over musical choices or performance practices, or agreeing on mutually appealing musical forms like the gospel songs of the Sunday school movement, African Americans forged lively faith communities and distinctive cultures in otherwise adverse environments. The study concludes that religious music was a crucial form of African American discourse and expression in the post-emancipation era. In the Black Church, it nurtured an atmosphere of exchange, gave structure and voice to conflict, helped create a public sphere, and upheld the values of black people.
Resumo:
The best-effort nature of the Internet poses a significant obstacle to the deployment of many applications that require guaranteed bandwidth. In this paper, we present a novel approach that enables two edge/border routers-which we call Internet Traffic Managers (ITM)-to use an adaptive number of TCP connections to set up a tunnel of desirable bandwidth between them. The number of TCP connections that comprise this tunnel is elastic in the sense that it increases/decreases in tandem with competing cross traffic to maintain a target bandwidth. An origin ITM would then schedule incoming packets from an application requiring guaranteed bandwidth over that elastic tunnel. Unlike many proposed solutions that aim to deliver soft QoS guarantees, our elastic-tunnel approach does not require any support from core routers (as with IntServ and DiffServ); it is scalable in the sense that core routers do not have to maintain per-flow state (as with IntServ); and it is readily deployable within a single ISP or across multiple ISPs. To evaluate our approach, we develop a flow-level control-theoretic model to study the transient behavior of established elastic TCP-based tunnels. The model captures the effect of cross-traffic connections on our bandwidth allocation policies. Through extensive simulations, we confirm the effectiveness of our approach in providing soft bandwidth guarantees. We also outline our kernel-level ITM prototype implementation.
Resumo:
The Border Gateway Protocol (BGP) is an interdomain routing protocol that allows each Autonomous System (AS) to define its own routing policies independently and use them to select the best routes. By means of policies, ASes are able to prevent some traffic from accessing their resources, or direct their traffic to a preferred route. However, this flexibility comes at the expense of a possibility of divergence behavior because of mutually conflicting policies. Since BGP is not guaranteed to converge even in the absence of network topology changes, it is not safe. In this paper, we propose a randomized approach to providing safety in BGP. The proposed algorithm dynamically detects policy conflicts, and tries to eliminate the conflict by changing the local preference of the paths involved. Both the detection and elimination of policy conflicts are performed locally, i.e. by using only local information. Randomization is introduced to prevent synchronous updates of the local preferences of the paths involved in the same conflict.
Resumo:
Interdomain routing on the Internet is performed using route preference policies specified independently, and arbitrarily by each Autonomous System in the network. These policies are used in the border gateway protocol (BGP) by each AS when selecting next-hop choices for routes to each destination. Conflicts between policies used by different ASs can lead to routing instabilities that, potentially, cannot be resolved no matter how long BGP is run. The Stable Paths Problem (SPP) is an abstract graph theoretic model of the problem of selecting nexthop routes for a destination. A stable solution to the problem is a set of next-hop choices, one for each AS, that is compatible with the policies of each AS. In a stable solution each AS has selected its best next-hop given that the next-hop choices of all neighbors are fixed. BGP can be viewed as a distributed algorithm for solving SPP. In this report we consider the stable paths problem, as well as a family of restricted variants of the stable paths problem, which we call F stable paths problems. We show that two very simple variants of the stable paths problem are also NP-complete. In addition we show that for networks with a DAG topology, there is an efficient centralized algorithm to solve the stable paths problem, and that BGP always efficiently converges to a stable solution on such networks.
Resumo:
The cost and complexity of deploying measurement infrastructure in the Internet for the purpose of analyzing its structure and behavior is considerable. Basic questions about the utility of increasing the number of measurements and/or measurement sites have not yet been addressed which has lead to a "more is better" approach to wide-area measurements. In this paper, we quantify the marginal utility of performing wide-area measurements in the context of Internet topology discovery. We characterize topology in terms of nodes, links, node degree distribution, and end-to-end flows using statistical and information-theoretic techniques. We classify nodes discovered on the routes between a set of 8 sources and 1277 destinations to differentiate nodes which make up the so called "backbone" from those which border the backbone and those on links between the border nodes and destination nodes. This process includes reducing nodes that advertise multiple interfaces to single IP addresses. We show that the utility of adding sources goes down significantly after 2 from the perspective of interface, node, link and node degree discovery. We show that the utility of adding destinations is constant for interfaces, nodes, links and node degree indicating that it is more important to add destinations than sources. Finally, we analyze paths through the backbone and show that shared link distributions approximate a power law indicating that a small number of backbone links in our study are very heavily utilized.
Resumo:
The Border Gateway Protocol (BGP) is the current inter-domain routing protocol used to exchange reachability information between Autonomous Systems (ASes) in the Internet. BGP supports policy-based routing which allows each AS to independently adopt a set of local policies that specify which routes it accepts and advertises from/to other networks, as well as which route it prefers when more than one route becomes available. However, independently chosen local policies may cause global conflicts, which result in protocol divergence. In this paper, we propose a new algorithm, called Adaptive Policy Management Scheme (APMS), to resolve policy conflicts in a distributed manner. Akin to distributed feedback control systems, each AS independently classifies the state of the network as either conflict-free or potentially-conflicting by observing its local history only (namely, route flaps). Based on the degree of measured conflicts (policy conflict-avoidance vs. -control mode), each AS dynamically adjusts its own path preferences—increasing its preference for observably stable paths over flapping paths. APMS also includes a mechanism to distinguish route flaps due to topology changes, so as not to confuse them with those due to policy conflicts. A correctness and convergence analysis of APMS based on the substability property of chosen paths is presented. Implementation in the SSF network simulator is performed, and simulation results for different performance metrics are presented. The metrics capture the dynamic performance (in terms of instantaneous throughput, delay, routing load, etc.) of APMS and other competing solutions, thus exposing the often neglected aspects of performance.
Resumo:
The Border Gateway Protocol (BGP) is the current inter-domain routing protocol used to exchange reachability information between Autonomous Systems (ASes) in the Internet. BGP supports policy-based routing which allows each AS to independently define a set of local policies on which routes it accepts and advertises from/to other networks, as well as on which route it prefers when more than one route becomes available. However, independently chosen local policies may cause global conflicts, which result in protocol divergence. In this paper, we propose a new algorithm, called Adaptive Policy Management Scheme(APMS), to resolve policy conflicts in a distributed manner. Akin to distributed feedback control systems, each AS independently classifies the state of the network as either conflict-free or potentially conflicting by observing its local history only (namely, route flaps). Based on the degree of measured conflicts, each AS dynamically adjusts its own path preferences---increasing its preference for observably stable paths over flapping paths. APMS also includes a mechanism to distinguish route flaps due to topology changes, so as not to confuse them with those due to policy conflicts. A correctness and convergence analysis of APMS based on the sub-stability property of chosen paths is presented. Implementation in the SSF network simulator is performed, and simulation results for different performance metrics are presented. The metrics capture the dynamic performance (in terms of instantaneous throughput, delay, etc.) of APMS and other competing solutions, thus exposing the often neglected aspects of performance.