2 resultados para Distribution transformer modeling
em Boston University Digital Common
Resumo:
This paper explores reasons for the high degree of variability in the sizes of ASes that have recently been observed, and the processes by which this variable distribution develops. AS size distribution is important for a number of reasons. First, when modeling network topologies, an AS size distribution assists in labeling routers with an associated AS. Second, AS size has been found to be positively correlated with the degree of the AS (number of peering links), so understanding the distribution of AS sizes has implications for AS connectivity properties. Our model accounts for AS births, growth, and mergers. We analyze two models: one incorporates only the growth of hosts and ASes, and a second extends that model to include mergers of ASes. We show analytically that, given reasonable assumptions about the nature of mergers, the resulting size distribution exhibits a power law tail with the exponent independent of the details of the merging process. We estimate parameters of the models from measurements obtained from Internet registries and from BGP tables. We then compare the models solutions to empirical AS size distribution taken from Mercator and Skitter datasets, and find that the simple growth-based model yields general agreement with empirical data. Our analysis of the model in which mergers occur in a manner independent of the size of the merging ASes suggests that more detailed analysis of merger processes is needed.
Resumo:
The World Wide Web (WWW or Web) is growing rapidly on the Internet. Web users want fast response time and easy access to a enormous variety of information across the world. Thus, performance is becoming a main issue in the Web. Fractals have been used to study fluctuating phenomena in many different disciplines, from the distribution of galaxies in astronomy to complex physiological control systems. The Web is also a complex, irregular, and random system. In this paper, we look at the document reference pattern at Internet Web servers and use fractal-based models to understand aspects (e.g. caching schemes) that affect the Web performance.