7 resultados para Discrete Time Branching Processes
em Boston University Digital Common
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged experiments and popular movies. An overall increase in segmentation accuracy of up to 24% is observed in 17 out of 21 test sequences. In all but one case the skin-color classification rates for our system were higher, with background classification rates comparable to those of the static segmentation.
Resumo:
In a probabilistic cellular automaton in which all local transitions have positive probability, the problem of keeping a bit of information for more than a constant number of steps is nontrivial, even in an infinite automaton. Still, there is a solution in 2 dimensions, and this solution can be used to construct a simple 3-dimensional discrete-time universal fault-tolerant cellular automaton. This technique does not help much to solve the following problems: remembering a bit of information in 1 dimension; computing in dimensions lower than 3; computing in any dimension with non-synchronized transitions. Our more complex technique organizes the cells in blocks that perform a reliable simulation of a second (generalized) cellular automaton. The cells of the latter automaton are also organized in blocks, simulating even more reliably a third automaton, etc. Since all this (a possibly infinite hierarchy) is organized in "software", it must be under repair all the time from damage caused by errors. A large part of the problem is essentially self-stabilization recovering from a mess of arbitrary-size and content caused by the faults. The present paper constructs an asynchronous one-dimensional fault-tolerant cellular automaton, with the further feature of "self-organization". The latter means that unless a large amount of input information must be given, the initial configuration can be chosen to be periodical with a small period.
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and based on predictions of the Markov model. The evolution of the skin color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and re-sampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. Quantitative evaluation of the method was conducted on labeled ground-truth video sequences taken from popular movies.
Resumo:
Recent research have exposed new breeds of attacks that are capable of denying service or inflicting significant damage to TCP flows, without sustaining the attack traffic. Such attacks are often referred to as "low-rate" attacks and they stand in sharp contrast against traditional Denial of Service (DoS) attacks that can completely shut off TCP flows by flooding an Internet link. In this paper, we study the impact of these new breeds of attacks and the extent to which defense mechanisms are capable of mitigating the attack's impact. Through adopting a simple discrete-time model with a single TCP flow and a nonoblivious adversary, we were able to expose new variants of these low-rate attacks that could potentially have high attack potency per attack burst. Our analysis is focused towards worst-case scenarios, thus our results should be regarded as upper bounds on the impact of low-rate attacks rather than a real assessment under a specific attack scenario.
Resumo:
A new approach is proposed for clustering time-series data. The approach can be used to discover groupings of similar object motions that were observed in a video collection. A finite mixture of hidden Markov models (HMMs) is fitted to the motion data using the expectation-maximization (EM) framework. Previous approaches for HMM-based clustering employ a k-means formulation, where each sequence is assigned to only a single HMM. In contrast, the formulation presented in this paper allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. Experiments with simulated data demonstrate the benefit of using this EM-based approach when there is more "overlap" in the processes generating the data. Experiments with real data show the promising potential of HMM-based motion clustering in a number of applications.
Resumo:
We propose and evaluate an admission control paradigm for RTDBS, in which a transaction is submitted to the system as a pair of processes: a primary task, and a recovery block. The execution requirements of the primary task are not known a priori, whereas those of the recovery block are known a priori. Upon the submission of a transaction, an Admission Control Mechanism is employed to decide whether to admit or reject that transaction. Once admitted, a transaction is guaranteed to finish executing before its deadline. A transaction is considered to have finished executing if exactly one of two things occur: Either its primary task is completed (successful commitment), or its recovery block is completed (safe termination). Committed transactions bring a profit to the system, whereas a terminated transaction brings no profit. The goal of the admission control and scheduling protocols (e.g., concurrency control, I/O scheduling, memory management) employed in the system is to maximize system profit. We describe a number of admission control strategies and contrast (through simulations) their relative performance.
Resumo:
A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.