7 resultados para Deterministic Expander
em Boston University Digital Common
Resumo:
We consider the motion of ballistic electrons within a superlattice miniband under the influence of an alternating electric field. We show that the interaction of electrons with the self-consistent electromagnetic field generated by the electron current may lead to the transition from regular to chaotic dynamics. We estimate the conditions for the experimental observation of this deterministic chaos and discuss the similarities of the superlattice system with the other condensed matter and quantum optical systems.
Resumo:
Consider a network of processors (sites) in which each site x has a finite set N(x) of neighbors. There is a transition function f that for each site x computes the next state ξ(x) from the states in N(x). But these transitions (updates) are applied in arbitrary order, one or many at a time. If the state of site x at time t is η(x; t) then let us define the sequence ζ(x; 0); ζ(x; 1), ... by taking the sequence η(x; 0),η(x; 1), ... , and deleting each repetition, i.e. each element equal to the preceding one. The function f is said to have invariant histories if the sequence ζ(x; i), (while it lasts, in case it is finite) depends only on the initial configuration, not on the order of updates. This paper shows that though the invariant history property is typically undecidable, there is a useful simple sufficient condition, called commutativity: For any configuration, for any pair x; y of neighbors, if the updating would change both ξ(x) and ξ(y) then the result of updating first x and then y is the same as the result of doing this in the reverse order. This fact is derivable from known results on the confluence of term-rewriting systems but the self-contained proof given here may be justifiable.
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.
Resumo:
Efficient storage of types within a compiler is necessary to avoid large blowups in space during compilation. Recursive types in particular are important to consider, as naive representations of recursive types may be arbitrarily larger than necessary through unfolding. Hash-consing has been used to efficiently store non-recursive types. Deterministic finite automata techniques have been used to efficiently perform various operations on recursive types. We present a new system for storing recursive types combining hash-consing and deterministic finite automata techniques. The space requirements are linear in the number of distinct types. Both update and lookup operations take polynomial time and linear space and type equality can be checked in constant time once both types are in the system.
Resumo:
A weak reference is a reference to an object that is not followed by the pointer tracer when garbage collection is called. That is, a weak reference cannot prevent the object it references from being garbage collected. Weak references remain a troublesome programming feature largely because there is not an accepted, precise semantics that describes their behavior (in fact, we are not aware of any formalization of their semantics). The trouble is that weak references allow reachable objects to be garbage collected, therefore allowing garbage collection to influence the result of a program. Despite this difficulty, weak references continue to be used in practice for reasons related to efficient storage management, and are included in many popular programming languages (Standard ML, Haskell, OCaml, and Java). We give a formal semantics for a calculus called λweak that includes weak references and is derived from Morrisett, Felleisen, and Harper’s λgc. λgc formalizes the notion of garbage collection by means of a rewrite rule. Such a formalization is required to precisely characterize the semantics of weak references. However, the inclusion of a garbage-collection rewrite-rule in a language with weak references introduces non-deterministic evaluation, even if the parameter-passing mechanism is deterministic (call-by-value in our case). This raises the question of confluence for our rewrite system. We discuss natural restrictions under which our rewrite system is confluent, thus guaranteeing uniqueness of program result. We define conditions that allow other garbage collection algorithms to co-exist with our semantics of weak references. We also introduce a polymorphic type system to prove the absence of erroneous program behavior (i.e., the absence of “stuck evaluation”) and a corresponding type inference algorithm. We prove the type system sound and the inference algorithm sound and complete.
Resumo:
When analysing the behavior of complex networked systems, it is often the case that some components within that network are only known to the extent that they belong to one of a set of possible "implementations" – e.g., versions of a specific protocol, class of schedulers, etc. In this report we augment the specification language considered in BUCSTR-2004-021, BUCS-TR-2005-014, BUCS-TR-2005-015, and BUCS-TR-2005-033, to include a non-deterministic multiple-choice let-binding, which allows us to consider compositions of networking subsystems that allow for looser component specifications.
Resumo:
Statistical properties offast-slow Ellias-Grossberg oscillators are studied in response to deterministic and noisy inputs. Oscillatory responses remain stable in noise due to the slow inhibitory variable, which establishes an adaptation level that centers the oscillatory responses of the fast excitatory variable to deterministic and noisy inputs. Competitive interactions between oscillators improve the stability in noise. Although individual oscillation amplitudes decrease with input amplitude, the average to'tal activity increases with input amplitude, thereby suggesting that oscillator output is evaluated by a slow process at downstream network sites.