2 resultados para Decidability
em Boston University Digital Common
Resumo:
We establish the equivalence of type reconstruction with polymorphic recursion and recursive types is equivalent to regular semi-unification which proves the undecidability of the corresponding type reconstruction problem. We also establish the equivalence of type reconstruction with polymorphic recursion and positive recursive types to a special case of regular semi-unification which we call positive regular semi-unification. The decidability of positive regular semi-unification is an open problem.
Resumo:
System F is the well-known polymorphically-typed λ-calculus with universal quantifiers ("∀"). F+η is System F extended with the eta rule, which says that if term M can be given type τ and M η-reduces to N, then N can also be given the type τ. Adding the eta rule to System F is equivalent to adding the subsumption rule using the subtyping ("containment") relation that Mitchell defined and axiomatized [Mit88]. The subsumption rule says that if M can be given type τ and τ is a subtype of type σ, then M can be given type σ. Mitchell's subtyping relation involves no extensions to the syntax of types, i.e., no bounded polymorphism and no supertype of all types, and is thus unrelated to the system F≤("F-sub"). Typability for F+η is the problem of determining for any term M whether there is any type τ that can be given to it using the type inference rules of F+η. Typability has been proven undecidable for System F [Wel94] (without the eta rule), but the decidability of typability has been an open problem for F+η. Mitchell's subtyping relation has recently been proven undecidable [TU95, Wel95b], implying the undecidability of "type checking" for F+η. This paper reduces the problem of subtyping to the problem of typability for F+η, thus proving the undecidability of typability. The proof methods are similar in outline to those used to prove the undecidability of typability for System F, but the fine details differ greatly.