4 resultados para Data-representation

em Boston University Digital Common


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a view-point invariant representation of moving object trajectories that can be used in video database applications. It is assumed that trajectories lie on a surface that can be locally approximated with a plane. Raw trajectory data is first locally approximated with a cubic spline via least squares fitting. For each sampled point of the obtained curve, a projective invariant feature is computed using a small number of points in its neighborhood. The resulting sequence of invariant features computed along the entire trajectory forms the view invariant descriptor of the trajectory itself. Time parametrization has been exploited to compute cross ratios without ambiguity due to point ordering. Similarity between descriptors of different trajectories is measured with a distance that takes into account the statistical properties of the cross ratio, and its symmetry with respect to the point at infinity. In experiments, an overall correct classification rate of about 95% has been obtained on a dataset of 58 trajectories of players in soccer video, and an overall correct classification rate of about 80% has been obtained on matching partial segments of trajectories collected from two overlapping views of outdoor scenes with moving people and cars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.