18 resultados para DRAGON (Computer system)

em Boston University Digital Common


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent shared memory is a convenient, but inefficient, method of inter-process communication for parallel programs. By contrast, message passing can be less convenient, but more efficient. To get the benefits of both models, several non-coherent memory behaviors have recently been proposed in the literature. We present an implementation of Mermera, a shared memory system that supports both coherent and non-coherent behaviors in a manner that enables programmers to mix multiple behaviors in the same program[HS93]. A programmer can debug a Mermera program using coherent memory, and then improve its performance by selectively reducing the level of coherence in the parts that are critical to performance. Mermera permits a trade-off of coherence for performance. We analyze this trade-off through measurements of our implementation, and by an example that illustrates the style of programming needed to exploit non-coherence. We find that, even on a small network of workstations, the performance advantage of non-coherence is compelling. Raw non-coherent memory operations perform 20-40~times better than non-coherent memory operations. An example application program is shown to run 5-11~times faster when permitted to exploit non-coherence. We conclude by commenting on our use of the Isis Toolkit of multicast protocols in implementing Mermera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a prototype implementation of a Distributed File System (DFS) based on the Adaptive Information Dispersal Algorithm (AIDA). Using AIDA, a file block is encoded and dispersed into smaller blocks stored on a number of DFS nodes distributed over a network. The implementation devises file creation, read, and write operations. In particular, when reading a file, the DFS accepts an optional timing constraint, which it uses to determine the level of redundancy needed for the read operation. The tighter the timing constraint, the more nodes in the DFS are queried for encoded blocks. Write operations update all blocks in all DFS nodes--with future implementations possibly including the use of read and write quorums. This work was conducted under the supervision of Professor Azer Bestavros (best@cs.bu.edu) in the Computer Science Department as part of Mohammad Makarechian's Master's project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce "BU-MIA," a Medical Image Analysis system that integrates various advanced chest image analysis methods for detection, estimation, segmentation, and registration. BU-MIA evaluates repeated computed tomography (CT) scans of the same patient to facilitate identification and evaluation of pulmonary nodules for interval growth. It provides a user-friendly graphical user interface with a number of interaction tools for development, evaluation, and validation of chest image analysis methods. The structures that BU-MIA processes include the thorax, lungs, and trachea, pulmonary structures, such as lobes, fissures, nodules, and vessels, and bones, such as sternum, vertebrae, and ribs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines how and why web server performance changes as the workload at the server varies. We measure the performance of a PC acting as a standalone web server, running Apache on top of Linux. We use two important tools to understand what aspects of software architecture and implementation determine performance at the server. The first is a tool that we developed, called WebMonitor, which measures activity and resource consumption, both in the operating system and in the web server. The second is the kernel profiling facility distributed as part of Linux. We vary the workload at the server along two important dimensions: the number of clients concurrently accessing the server, and the size of the documents stored on the server. Our results quantify and show how more clients and larger files stress the web server and operating system in different and surprising ways. Our results also show the importance of fixed costs (i.e., opening and closing TCP connections, and updating the server log) in determining web server performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the question of whether to employ the first-come-first-served (FCFS) discipline or the processor-sharing (PS) discipline at the hosts in a distributed server system. We are interested in the case in which service times are drawn from a heavy-tailed distribution, and so have very high variability. Traditional wisdom when task sizes are highly variable would prefer the PS discipline, because it allows small tasks to avoid being delayed behind large tasks in a queue. However, we show that system performance can actually be significantly better under FCFS queueing, if each task is assigned to a host based on the task's size. By task assignment, we mean an algorithm that inspects incoming tasks and assigns them to hosts for service. The particular task assignment policy we propose is called SITA-E: Size Interval Task Assignment with Equal Load. Surprisingly, under SITA-E, FCFS queueing typically outperforms the PS discipline by a factor of about two, as measured by mean waiting time and mean slowdown (waiting time of task divided by its service time). We compare the FCFS/SITA-E policy to the processor-sharing case analytically; in addition we compare it to a number of other policies in simulation. We show that the benefits of SITA-E are present even in small-scale distributed systems (four or more hosts). Furthermore, SITA-E is a static policy that does not incorporate feedback knowledge of the state of the hosts, which allows for a simple and scalable implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of task assignment in a distributed system (such as a distributed Web server) in which task sizes are drawn from a heavy-tailed distribution. Many task assignment algorithms are based on the heuristic that balancing the load at the server hosts will result in optimal performance. We show this conventional wisdom is less true when the task size distribution is heavy-tailed (as is the case for Web file sizes). We introduce a new task assignment policy, called Size Interval Task Assignment with Variable Load (SITA-V). SITA-V purposely operates the server hosts at different loads, and directs smaller tasks to the lighter-loaded hosts. The result is that SITA-V provably decreases the mean task slowdown by significant factors (up to 1000 or more) where the more heavy-tailed the workload, the greater the improvement factor. We evaluate the tradeoff between improvement in slowdown and increase in waiting time in a system using SITA-V, and show conditions under which SITA-V represents a particularly appealing policy. We conclude with a discussion of the use of SITA-V in a distributed Web server, and show that it is attractive because it has a simple implementation which requires no communication from the server hosts back to the task router.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has shown the prevalence of small-world phenomena [28] in many networks. Small-world graphs exhibit a high degree of clustering, yet have typically short path lengths between arbitrary vertices. Internet AS-level graphs have been shown to exhibit small-world behaviors [9]. In this paper, we show that both Internet AS-level and router-level graphs exhibit small-world behavior. We attribute such behavior to two possible causes–namely the high variability of vertex degree distributions (which were found to follow approximately a power law [15]) and the preference of vertices to have local connections. We show that both factors contribute with different relative degrees to the small-world behavior of AS-level and router-level topologies. Our findings underscore the inefficacy of the Barabasi-Albert model [6] in explaining the growth process of the Internet, and provide a basis for more promising approaches to the development of Internet topology generators. We present such a generator and show the resemblance of the synthetic graphs it generates to real Internet AS-level and router-level graphs. Using these graphs, we have examined how small-world behaviors affect the scalability of end-system multicast. Our findings indicate that lower variability of vertex degree and stronger preference for local connectivity in small-world graphs results in slower network neighborhood expansion, and in longer average path length between two arbitrary vertices, which in turn results in better scaling of end system multicast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System F is a type system that can be seen as both a proof system for second-order propositional logic and as a polymorphic programming language. In this work we explore several extensions of System F by types which express subtyping constraints. These systems include terms which represent proofs of subtyping relationships between types. Given a proof that one type is a subtype of another, one may use a coercion term constructor to coerce terms from the first type to the second. The ability to manipulate type constraints as first-class entities gives these systems a lot of expressive power, including the ability to encode generalized algebraic data types and intensional type analysis. The main contributions of this work are in the formulation of constraint types and a proof of strong normalization for an extension of System F with constraint types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

snBench is a platform on which novice users compose and deploy distributed Sense and Respond programs for simultaneous execution on a shared, distributed infrastructure. It is a natural imperative that we have the ability to (1) verify the safety/correctness of newly submitted tasks and (2) derive the resource requirements for these tasks such that correct allocation may occur. To achieve these goals we have established a multi-dimensional sized type system for our functional-style Domain Specific Language (DSL) called Sensor Task Execution Plan (STEP). In such a type system data types are annotated with a vector of size attributes (e.g., upper and lower size bounds). Tracking multiple size aspects proves essential in a system in which Images are manipulated as a first class data type, as image manipulation functions may have specific minimum and/or maximum resolution restrictions on the input they can correctly process. Through static analysis of STEP instances we not only verify basic type safety and establish upper computational resource bounds (i.e., time and space), but we also derive and solve data and resource sizing constraints (e.g., Image resolution, camera capabilities) from the implicit constraints embedded in program instances. In fact, the static methods presented here have benefit beyond their application to Image data, and may be extended to other data types that require tracking multiple dimensions (e.g., image "quality", video frame-rate or aspect ratio, audio sampling rate). In this paper we present the syntax and semantics of our functional language, our type system that builds costs and resource/data constraints, and (through both formalism and specific details of our implementation) provide concrete examples of how the constraints and sizing information are used in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a type system that can effectively facilitate the use of types in capturing invariants in stateful programs that may involve (sophisticated) pointer manipulation. With its root in a recently developed framework Applied Type System (ATS), the type system imposes a level of abstraction on program states by introducing a novel notion of recursive stateful views and then relies on a form of linear logic to reason about such views. We consider the design and then the formalization of the type system to constitute the primary contribution of the paper. In addition, we mention a prototype implementation of the type system and then give a variety of examples that attests to the practicality of programming with recursive stateful views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI.