1 resultado para CsI(Tl)-detector
em Boston University Digital Common
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (13)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (338)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (35)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (114)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (33)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (12)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (54)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (57)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo España (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (5)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (31)
- University of Queensland eSpace - Australia (4)
- University of Washington (2)
Resumo:
A common design of an object recognition system has two steps, a detection step followed by a foreground within-class classification step. For example, consider face detection by a boosted cascade of detectors followed by face ID recognition via one-vs-all (OVA) classifiers. Another example is human detection followed by pose recognition. Although the detection step can be quite fast, the foreground within-class classification process can be slow and becomes a bottleneck. In this work, we formulate a filter-and-refine scheme, where the binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the FRGC V2 data set, hand shape detection and parameter estimation on a hand data set and vehicle detection and view angle estimation on a multi-view vehicle data set. On all data sets, our approach has comparable accuracy and is at least five times faster than the brute force approach.