4 resultados para Crimes in Internet

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent empirical studies have shown that Internet topologies exhibit power laws of the form for the following relationships: (P1) outdegree of node (domain or router) versus rank; (P2) number of nodes versus outdegree; (P3) number of node pairs y = x^α within a neighborhood versus neighborhood size (in hops); and (P4) eigenvalues of the adjacency matrix versus rank. However, causes for the appearance of such power laws have not been convincingly given. In this paper, we examine four factors in the formation of Internet topologies. These factors are (F1) preferential connectivity of a new node to existing nodes; (F2) incremental growth of the network; (F3) distribution of nodes in space; and (F4) locality of edge connections. In synthetically generated network topologies, we study the relevance of each factor in causing the aforementioned power laws as well as other properties, namely diameter, average path length and clustering coefficient. Different kinds of network topologies are generated: (T1) topologies generated using our parametrized generator, we call BRITE; (T2) random topologies generated using the well-known Waxman model; (T3) Transit-Stub topologies generated using GT-ITM tool; and (T4) regular grid topologies. We observe that some generated topologies may not obey power laws P1 and P2. Thus, the existence of these power laws can be used to validate the accuracy of a given tool in generating representative Internet topologies. Power laws P3 and P4 were observed in nearly all considered topologies, but different topologies showed different values of the power exponent α. Thus, while the presence of power laws P3 and P4 do not give strong evidence for the representativeness of a generated topology, the value of α in P3 and P4 can be used as a litmus test for the representativeness of a generated topology. We also find that factors F1 and F2 are the key contributors in our study which provide the resemblance of our generated topologies to that of the Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As distributed information services like the World Wide Web become increasingly popular on the Internet, problems of scale are clearly evident. A promising technique that addresses many of these problems is service (or document) replication. However, when a service is replicated, clients then need the additional ability to find a "good" provider of that service. In this paper we report on techniques for finding good service providers without a priori knowledge of server location or network topology. We consider the use of two principal metrics for measuring distance in the Internet: hops, and round-trip latency. We show that these two metrics yield very different results in practice. Surprisingly, we show data indicating that the number of hops between two hosts in the Internet is not strongly correlated to round-trip latency. Thus, the distance in hops between two hosts is not necessarily a good predictor of the expected latency of a document transfer. Instead of using known or measured distances in hops, we show that the extra cost at runtime incurred by dynamic latency measurement is well justified based on the resulting improved performance. In addition we show that selection based on dynamic latency measurement performs much better in practice that any static selection scheme. Finally, the difference between the distribution of hops and latencies is fundamental enough to suggest differences in algorithms for server replication. We show that conclusions drawn about service replication based on the distribution of hops need to be revised when the distribution of latencies is considered instead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe and evaluate options for providing anonymous IP service, argue for the further investigation of local anonymity, and sketch a framework for the implementation of locally anonymous networks.